If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-6=0
a = 1; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·1·(-6)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*1}=\frac{-4-2\sqrt{10}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*1}=\frac{-4+2\sqrt{10}}{2} $
| 42/y-3=3 | | 200,000,000=x/10,000+4 | | -12w+4=-20w+1 | | -30+5w=9w+18 | | 6x+30=12x+18 | | 7280-80m=7280 | | X+.08x=1.08 | | F(x)=2^2x-16x | | (4x+17/18)-(13x-2/17x-32)+(x+3)=7x/12-(x+16/36) | | -9x-9+4=76 | | (2^4x)(3^2x-3)=2^6 | | -6(-3-9x)=-18 | | -3b-4-5b=-3b-2 | | -10a-8=78 | | 0=-16x^2+95x-98 | | 1.4x+0.1x=0.6x-3.6 | | 1.4x+0.1x=0.6-3.6 | | x+1=299 | | 12x-(6x-8)=50 | | -21+x=x+10 | | 7-8k=83 | | 7h=(2h-18 | | 8x+7–2x=42 | | 15-7p=7-3p | | (5x=8)/12 | | -2(4+h)=3h | | 59.98=0.13x | | 15a=50 | | 3(v-5)(-v+1)=0 | | (4-y)(4y-5)=0 | | (z+2)(z+6)=0 | | 3z(z+2)(z+6)=0 |